Performs joint Poisson regression using the omnibus function
Source:R/Poisson_Regression.R
RunPoissonRegression_Joint_Omnibus.Rd
RunPoissonRegression_Joint_Omnibus
uses user provided data, time/event columns,
vectors specifying the model, and options to control the convergence and starting positions.
Has additional options to starting with several initial guesses, uses joint competing risks equation
Usage
RunPoissonRegression_Joint_Omnibus(
df,
pyr0,
events,
name_list,
term_n_list = list(),
tform_list = list(),
keep_constant_list = list(),
a_n_list = list(),
modelform = "M",
fir = 0,
der_iden = 0,
control = list(),
strat_col = "null",
model_control = list(),
cons_mat = as.matrix(c(0)),
cons_vec = c(0)
)
Arguments
- df
a data.table containing the columns of interest
- pyr0
column used for person-years per row
- events
vector of event column names
- name_list
list of vectors for columns for event specific or shared model elements, required
- term_n_list
list of vectors for term numbers for event specific or shared model elements, defaults to term 0
- tform_list
list of vectors for subterm types for event specific or shared model elements, defaults to loglinear
- keep_constant_list
list of vectors for constant elements for event specific or shared model elements, defaults to free (0)
- a_n_list
list of vectors for parameter values for event specific or shared model elements, defaults to term 0
- modelform
string specifying the model type: M, ME, A, PA, PAE, GMIX, GMIX-R, GMIX-E
- fir
term number for the initial term, used for models of the form T0*f(Ti) in which the order matters
- der_iden
number for the subterm to test derivative at, only used for testing runs with a single varying parameter, should be smaller than total number of parameters. indexed starting at 0
- control
list of parameters controlling the convergence, see Def_Control() for options or vignette("Control_Options")
- strat_col
column to stratify by if needed
- model_control
controls which alternative model options are used, see Def_model_control() for options and vignette("Control_Options") for further details
- cons_mat
Matrix containing coefficients for system of linear constraints, formatted as matrix
- cons_vec
Vector containing constants for system of linear constraints, formatted as vector
See also
Other Poisson Wrapper Functions:
PoissonCurveSolver()
,
RunPoissonEventAssignment()
,
RunPoissonEventAssignment_bound()
,
RunPoissonRegression()
,
RunPoissonRegression_Guesses_CPP()
,
RunPoissonRegression_Omnibus()
,
RunPoissonRegression_Residual()
,
RunPoissonRegression_Single()
,
RunPoissonRegression_Strata()
,
RunPoissonRegression_Tier_Guesses()
Examples
library(data.table)
## basic example code reproduced from the starting-description vignette
a <- c(0, 0, 0, 1, 1, 1)
b <- c(1, 1, 1, 2, 2, 2)
c <- c(0, 1, 2, 2, 1, 0)
d <- c(1, 1, 0, 0, 1, 1)
e <- c(0, 1, 1, 1, 0, 0)
f <- c(0, 1, 0, 0, 1, 1)
df <- data.table("t0" = a, "t1" = b, "e0" = c, "e1" = d, "fac" = e)
time1 <- "t0"
time2 <- "t1"
df$pyr <- df$t1 - df$t0
pyr <- "pyr"
events <- c("e0", "e1")
names_e0 <- c("fac")
names_e1 <- c("fac")
names_shared <- c("t0", "t0")
term_n_e0 <- c(0)
term_n_e1 <- c(0)
term_n_shared <- c(0, 0)
tform_e0 <- c("loglin")
tform_e1 <- c("loglin")
tform_shared <- c("quad_slope", "loglin_top")
keep_constant_e0 <- c(0)
keep_constant_e1 <- c(0)
keep_constant_shared <- c(0, 0)
a_n_e0 <- c(-0.1)
a_n_e1 <- c(0.1)
a_n_shared <- c(0.001, -0.02)
name_list <- list("shared" = names_shared, "e0" = names_e0, "e1" = names_e1)
term_n_list <- list("shared" = term_n_shared, "e0" = term_n_e0, "e1" = term_n_e1)
tform_list <- list("shared" = tform_shared, "e0" = tform_e0, "e1" = tform_e1)
keep_constant_list <- list(
"shared" = keep_constant_shared,
"e0" = keep_constant_e0, "e1" = keep_constant_e1
)
a_n_list <- list("shared" = a_n_shared, "e0" = a_n_e0, "e1" = a_n_e1)
der_iden <- 0
modelform <- "M"
fir <- 0
control <- list(
"ncores" = 2, "lr" = 0.75, "maxiter" = 5,
"halfmax" = 5, "epsilon" = 1e-3,
"deriv_epsilon" = 1e-3, "abs_max" = 1.0, "change_all" = TRUE,
"dose_abs_max" = 100.0, "verbose" = FALSE,
"ties" = "breslow", "double_step" = 1
)
guesses_control <- list(
"maxiter" = 10, "guesses" = 10,
"lin_min" = 0.001, "lin_max" = 1,
"loglin_min" = -1, "loglin_max" = 1, "lin_method" = "uniform",
"loglin_method" = "uniform", strata = FALSE
)
strat_col <- "f"
e <- RunPoissonRegression_Joint_Omnibus(
df, pyr, events, name_list,
term_n_list,
tform_list, keep_constant_list,
a_n_list,
modelform, fir, der_iden,
control, strat_col
)