Performs Cox Proportional Hazards regression using the omnibus function with multiple column realizations
Source:R/Cox_Regression.R
RunCoxRegression_Omnibus_Multidose.Rd
RunCoxRegression_Omnibus_Multidose
uses user provided data, time/event columns,
vectors specifying the model, and options to control the convergence
and starting positions. Used for 2DMC column uncertainty methods.
Returns optimized parameters, log-likelihood, and standard deviation for each realization.
Has additional options for using stratification,
multiplicative loglinear 1-term,
competing risks, and calculation without derivatives
Usage
RunCoxRegression_Omnibus_Multidose(
df,
time1 = "start",
time2 = "end",
event0 = "event",
names = c("CONST"),
term_n = c(0),
tform = "loglin",
keep_constant = c(0),
a_n = c(0),
modelform = "M",
fir = 0,
der_iden = 0,
realization_columns = matrix(c("temp00", "temp01", "temp10", "temp11"), nrow = 2),
realization_index = c("temp0", "temp1"),
control = list(),
strat_col = "null",
cens_weight = "null",
model_control = list(),
cons_mat = as.matrix(c(0)),
cons_vec = c(0)
)
Arguments
- df
a data.table containing the columns of interest
- time1
column used for time period starts
- time2
column used for time period end
- event0
column used for event status
- names
columns for elements of the model, used to identify data columns
- term_n
term numbers for each element of the model
- tform
list of string function identifiers, used for linear/step
- keep_constant
binary values to denote which parameters to change
- a_n
list of initial parameter values, used to determine number of parameters. May be either a list of vectors or a single vector.
- modelform
string specifying the model type: M, ME, A, PA, PAE, GMIX, GMIX-R, GMIX-E
- fir
term number for the initial term, used for models of the form T0*f(Ti) in which the order matters
- der_iden
number for the subterm to test derivative at, only used for testing runs with a single varying parameter, should be smaller than total number of parameters. indexed starting at 0
- realization_columns
used for multi-realization regressions. Matrix of column names with rows for each column with realizations, columns for each realization
- realization_index
used for multi-realization regressions. Vector of column names, one for each column with realizations. each name should be used in the "names" variable in the equation definition
- control
list of parameters controlling the convergence, see Def_Control() for options or vignette("Control_Options")
- strat_col
column to stratify by if needed
- cens_weight
column containing the row weights
- model_control
controls which alternative model options are used, see Def_model_control() for options and vignette("Control_Options") for further details
- cons_mat
Matrix containing coefficients for system of linear constraints, formatted as matrix
- cons_vec
Vector containing constants for system of linear constraints, formatted as vector
See also
Other Cox Wrapper Functions:
CoxCurveSolver()
,
RunCoxNull()
,
RunCoxRegression()
,
RunCoxRegression_Basic()
,
RunCoxRegression_CR()
,
RunCoxRegression_Guesses_CPP()
,
RunCoxRegression_Omnibus()
,
RunCoxRegression_Single()
,
RunCoxRegression_Strata()
,
RunCoxRegression_Tier_Guesses()
Examples
library(data.table)
## basic example code reproduced from the starting-description vignette
df <- data.table::data.table(
"UserID" = c(112, 114, 213, 214, 115, 116, 117),
"t0" = c(18, 20, 18, 19, 21, 20, 18),
"t1" = c(30, 45, 57, 47, 36, 60, 55),
"lung" = c(0, 0, 1, 0, 1, 0, 0),
"dose" = c(0, 1, 1, 0, 1, 0, 1)
)
set.seed(3742)
df$rand <- floor(runif(nrow(df), min = 0, max = 5))
df$rand0 <- floor(runif(nrow(df), min = 0, max = 5))
df$rand1 <- floor(runif(nrow(df), min = 0, max = 5))
df$rand2 <- floor(runif(nrow(df), min = 0, max = 5))
time1 <- "t0"
time2 <- "t1"
names <- c("dose", "rand")
term_n <- c(0, 0)
tform <- c("loglin", "loglin")
realization_columns <- matrix(c("rand0", "rand1", "rand2"), nrow = 1)
realization_index <- c("rand")
keep_constant <- c(1, 0)
a_n <- c(0, 0)
modelform <- "M"
fir <- 0
der_iden <- 0
cens_weight <- c(0)
event <- "lung"
a_n <- c(-0.1, -0.1)
keep_constant <- c(0, 0)
control <- list(
"ncores" = 2, "lr" = 0.75, "maxiter" = 1,
"halfmax" = 2, "epsilon" = 1e-6,
"deriv_epsilon" = 1e-6, "abs_max" = 1.0,
"change_all" = TRUE, "dose_abs_max" = 100.0,
"verbose" = 0, "ties" = "breslow", "double_step" = 1
)
e <- RunCoxRegression_Omnibus_Multidose(df, time1, time2, event,
names,
term_n = term_n, tform = tform,
keep_constant = keep_constant, a_n = a_n,
modelform = modelform, fir = fir, der_iden = der_iden,
realization_columns = realization_columns,
realization_index = realization_index,
control = control, strat_col = "fac",
model_control = list(), cens_weight = "null"
)