RunCoxRegression
uses user provided data, vectors specifying the model,
and options to calculate relative risk for every row in the provided data
Arguments
- df
a data.table containing the columns of interest
- time1
column used for time period starts
- time2
column used for time period end
- event0
column used for event status
- names
columns for elements of the model, used to identify data columns
- term_n
term numbers for each element of the model
- tform
list of string function identifiers, used for linear/step
- keep_constant
binary values to denote which parameters to change
- a_n
list of initial parameter values, used to determine number of parameters. May be either a list of vectors or a single vector.
- modelform
string specifying the model type: M, ME, A, PA, PAE, GMIX, GMIX-R, GMIX-E
- fir
term number for the initial term, used for models of the form T0*f(Ti) in which the order matters
- control
list of parameters controlling the convergence, see Def_Control() for options or vignette("Control_Options")
- model_control
controls which alternative model options are used, see Def_model_control() for options and vignette("Control_Options") for further details
See also
Other Plotting Wrapper Functions:
RunCoxPlots()
Examples
library(data.table)
## basic example code reproduced from the starting-description vignette
df <- data.table::data.table(
"UserID" = c(112, 114, 213, 214, 115, 116, 117),
"Starting_Age" = c(18, 20, 18, 19, 21, 20, 18),
"Ending_Age" = c(30, 45, 57, 47, 36, 60, 55),
"Cancer_Status" = c(0, 0, 1, 0, 1, 0, 0),
"a" = c(0, 1, 1, 0, 1, 0, 1),
"b" = c(1, 1.1, 2.1, 2, 0.1, 1, 0.2),
"c" = c(10, 11, 10, 11, 12, 9, 11),
"d" = c(0, 0, 0, 1, 1, 1, 1)
)
# For the interval case
time1 <- "Starting_Age"
time2 <- "Ending_Age"
event <- "Cancer_Status"
names <- c("a", "b", "c", "d")
term_n <- c(0, 1, 1, 2)
fir <- 0
tform <- c("loglin", "lin", "lin", "plin")
modelform <- "M"
a_n <- c(1.1, 0.1, 0.2, 0.5) # used to test at a specific point
keep_constant <- c(0, 0, 0, 0)
control <- list(
"ncores" = 2, "lr" = 0.75, "maxiter" = 5, "halfmax" = 5,
"epsilon" = 1e-3,
"deriv_epsilon" = 1e-3, "abs_max" = 1.0, "change_all" = TRUE,
"dose_abs_max" = 100.0, "verbose" = FALSE, "ties" = "breslow",
"double_step" = 1
)
e <- Cox_Relative_Risk(
df, time1, time2, event, names, term_n, tform,
keep_constant, a_n, modelform, fir, control
)